

Mansoura University
Faculty of Engineering
Math. & Eng. Physics. Dept.

Mathematics 3

من الخارج

1st year Dept. Final Exam, January 2012 Time Allowed: 3 Hours.

يتألف الإختبار من ٤ أسئلة في ورقتين. برجاء بدء إجابة كل فرع من إحدى نهايتي ورقة الإجابة.

Question (1)

(a) Find the directional derivative of $u(x, y, z) = x \sin(yz)$ at (1, 3, 0) in the direction of $\mathbf{\bar{S}} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$

(b) Test for local maxima and minima for the function

$$f(x,y) = 6x^2 + 6y^2 + 6xy + 36x - 5$$
.

(c) Find the volume of the solid bounded by the region $y = x^2$ and y = 2x, and the plane z = x + 2y.

Question (2)

- (a) Evaluate the line integral $\int_{c} F \cdot dr$, where $\overline{F} = x^2 \text{ yi} xy \text{ j}$ and c is given by the vector function $r(t) = t^3 \text{ i} + t^4 \text{ j}$, $0 \le t \le 1$.
- (b) Use Gauss theorem to evaluate $\iint_{\Sigma} \overline{F} \odot \hat{n} \, ds$, where Σ is the unit sphere centered at origin and the vector field is given by $\overline{F}(x,y,z) = 2x\,\hat{i} + y^3\hat{j} + z^2\hat{k}$.

Mansoura University
Faculty of Engineering
Math. & Eng. Physics. Dept.

Mathematics 3

من الخارج

1st year Dept.

Final Exam, January 2012

Time Allowed: 3 Hours.

يتألف الإختبار من ٤ أسئلة في ورقتين. برجاء بدء إجابة كل فرع من إحدى نهايتي ورقة الإجابة.

Question (1)

- (a) Find the directional derivative of $u(x, y, z) = x \sin(yz)$ at (1, 3, 0) in the direction of $\vec{S} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$
- (b) Test for local maxima and minima for the function

$$f(x,y) = 6x^2 + 6y^2 + 6xy + 36x - 5$$
.

(c) Find the volume of the solid bounded by the region $y = x^2$ and y = 2x, and the plane z = x + 2y.

Question (2)

- (a) Evaluate the line integral $\int_c F \cdot dr$, where $\overline{F} = x^2 \text{ yi} xy \text{ j}$ and c is given by the vector function $r(t) = t^3 \text{ i} + t^4 \text{ j}$, $0 \le t \le 1$.
- (b) Use Gauss theorem to evaluate $\iint_{\Sigma} \overline{F} \odot \hat{n} \, ds$, where Σ is the unit sphere centered at origin and the vector field is given by $\overline{F}(x,y,z) = 2x\,\hat{i} + y^3\hat{j} + z^2\hat{k}$.